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Abstract— Robust visual tracking for the unmanned aerial
vehicle (UAV) is a challenging task in different types of
civilian UAV applications. Although the classical correlation
filter (CF) has been widely applied for UAV object tracking,
the background of the object is not learned in the classical
CF. In addition, the classical CF cannot estimate the object
scale changes, and it is not able to cope with object occlusion
effectively. Part-based tracking approach is often used for the
visual tracker to solve the occlusion issue. However, its real-time
performance for the UAV cannot be achieved due to the high
cost of object appearance updating. In this paper, a novel robust
visual tracker is presented for the UAV. The object is initially
divided into multiple parts, and different background-aware
correlation filters are applied for these divided object parts,
respectively. An efficient coarse-to-fine strategy with structure
comparison and Bayesian inference approach is proposed to lo-
cate object and estimate the object scale changes. In addition, an
adaptive threshold is presented to update each local appearance
model with a Gaussian process regression method. Qualitative
and quantitative tests show that the presented visual tracking
algorithm reaches real-time performance (i.e., more than twenty
frames per second) on an i7 processor with 640×360 image
resolution, and performs favorably against the most popular
state-of-the-art visual trackers in terms of robustness and
accuracy. To the best of our knowledge, it is the first time
that this novel scalable part-based visual tracker is presented,
and applied for the UAV tracking applications.

I. INTRODUCTION

Visual object tracking is an important task for the un-

manned aerial vehicle (UAV) with numerous applications

such as reconnaissance and surveillance [1], midair monitor-

ing [2], wildlife protection [3], and unknown environment

exploration [4]. In recent years, different visual tracking

approaches have been developed for the UAV, but the vision-

based UAV tracking remains as a challenging task due to

the object appearance changes caused by occlusion, scale

variation, illumination change, shape deformation, out-of-

plane or in-plane rotation, and onboard mechanical vibration.

Therefore, a more robust tracking algorithm is required to

achieve higher accurate in real-time UAV tracking applica-

tions, as one example shown in Fig. 1.

In literature, UAV tracking methods are classified as either

generative or discriminative approaches. Generative approach

casts the UAV tracking problem as searching for the region

1Changhong Fu and Yinqiang Zhang are with the School of
Mechanical Engineering, Tongji University, Shanghai 201804, China
changhongfu@tongji.edu.cn

2Ran Duan is with the Interdisciplinary Division of Aeronautical and
Aviation Engineering, Hong Kong Polytechnic University, HKSAR, China

3Zongwu Xie is with the State Key Laboratory of Robotics
and System, Harbin Institute of Technology, Harbin, China
xiezongwu@hit.edu.cn

Onboard camera

UAV

Frame k

Fig. 1. Visual object tracking of UAV. The appearance of the object (i.e.,
Biker) is changing due to the occlusion, scale variation, illumination change,
shape deformation, and onboard mechanical vibration.

which is the most similar to the tracked object. The tracking

object is often represented by a set of templates [5] or a group

of basis vectors from a subspace [6]. However, it assumes

that the object appearance does not change significantly

during the appearance updating procedure. Different from

the generative method, discriminative approach (also refers to

the tracking-by-detection method) treats tracking as a binary

classification problem to distinguish the tracking object from

object background. For instance, a visual tracking algorithm

with structured output tracking with kernels (STRUCK) [7] is

employed for UAV to achieve person following. In addition, a

visual tracker, which is developed with compressive sensing

[8] is used to track freewill object in UAV applications.

Recently, the correlation filter (CF)-based discriminative

method has been widely applied to various UAV tracking

tasks with high-speed and promising tracking performances.

A tracking system is designed in [9] for UAV to track a

maneuvering target with kernelized correlation filter (KCF)

[10]. The CF is implemented in [11] for UAV to achieve

real-time, smooth, and long-term object following in indoor

and outdoor practical scenarios. Moreover, the KCF is used

to generate image patch confidence in [12], measuring object

tracking reliability in the UAV tracking application. However,

these classical CF-based trackers confront boundary effects

and severe impacts of learning from circularly shifted sam-

ples of the foreground object. Negative examples, implicitly

generated by circulant property of correlation, are actually

synthetic and cannot represent true negative samples from

the background, leading to suboptimal tracking results. In

addition, the classical CF-based tracker cannot handle scale

variation.
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Fig. 2. Scalable part-based visual tracker for UAV with background-aware correlation filter. Adaptive classifier Ct−1
i , i.e., local region appearance model,

is updated with an online background-aware correlation filter on the (t-1)-th frame, and then applied to estimate the local region response on the t-th frame.

In literature, several background-aware trackers are pro-

posed to address the aforementioned issues. The correla-

tion filters with limited boundaries (CFLB) are presented

in [13] to extract real negative samples from background

regions by incorporating a cropping operator, i.e., binary

matrix. Additionally, a tracker with learning background-

aware correlation filters (BACF) is developed in [14], which

incorporates multi-channel features and employs an efficient

augmented Lagrangian method for filter learning, improving

the tracking robustness against background noise. Neverthe-

less, the CF-based tracker with holistic appearance model is

prone to be dominated by occluded regions of the tracking

object. Existing tracking methods solve this issue by using

multiple local appearance models, which achieve promising

results. Specifically, when the object is partially occluded, the

remaining visible parts from the object is able to maintain

visible cues for tracking. Several local appearance model-

based trackers have combined the classical CF for visual

tracking applications. For example, the part-based visual

tracker presented in [15] separates the whole object into

multiple sub-regions, and then employs the KCF trackers for

each sub-region to achieve comprehensive object tracking.

However, the boundary effect and severe impacts of learning

from circularly shifted samples of the foreground target are

still challenging issues for the object tracking performance

in [15].

In this paper, we propose a novel visual tracker for UAV.

The overview of the presented visual tracker is illustrated in

Fig. 2. In summary, the main contributions of our work are

listed as follows:

• A novel scalable part-based visual tracker is proposed,

and applied for the UAV object tracking applications.

• Each part of the tracking object is tracked by using a

background-aware discriminative tracking approach.

• A novel approach with coarse-to-fine strategy is pre-

sented to estimate the location and scale changes of

tracking object.

• A novel adaptive threshold is proposed to update each

local appearance model with a Gaussian process regres-

sion method.

Qualitative and quantitative UAV flight experiments show

that the presented visual tracking algorithm achieves real-

time performance (i.e., more than twenty frames per second)

on an i7 processor with 640×360 image resolution, and

outperforms the most popular state-of-the-art visual trackers

in terms of robustness and accuracy.

The outline of the paper is organized as follows: Section

II introduces the tracking approach with background-aware

CF. Section III introduces the presented novel visual tracking

algorithm, i.e., scalable part-based visual tracker. Section IV

presents the performance evaluations and comparisons with

the most popular state-of-the-art CF-based visual trackers.

Finally, the concluding remarks are given in Section V.

II. TRACKING WITH BACKGROUND-AWARE

CORRELATION FILTER

The classical CF trackers have benefited from the dense

sampling with cyclic shifts, as the shifted samples shown

in Fig. 3(a). However, such operation discards background

information. In addition, it brings the boundary effect, which

degrades the discriminative ability of the tracker. As a result,

these trackers are prone to providing suboptimal performance

in UAV tracking applications. To address these problems, a

background-aware CF tracker is developed based on [14] in

this work. It can provide a superior solution and improve the

tracking performance for UAV. In this section, we briefly
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(a) Upating classifier (C) with synthetic negative samples.

C

(b) Upating classifier (C) with real negative samples.

Fig. 3. Difference between the classical CF and background-aware CF.

introduce the background-aware CF (i.e., BACF) tracking

method.

Remark 1: In classical CF tracker, synthetic negative train-

ing samples are generated to update the CF, as the samples

with green rectangles shown in Fig. 3(a). However, the back-

ground information, i.e., real negative sample, is extracted for

updating in the background-aware CF tracker, as the samples

with green rectangles shown in Fig. 3(b).

1) Filter training: In the classical CF framework, the filter

w is trained with the ridge regression approach. Its raw

vectorized samples with length N are derived from image

patch x. To avoid boundary effects and gain real samples

from the background, a cropping operation is employed to

get training examples with a smaller size M,M � N . In the

Fourier domain, the objective function E(w, ĝ) is formulated

as following to obtain desired parameters of filter w:

E(w, ĝ) =
1

2
‖

D∑
d=1

X̂dĝd − ŷ‖22 +
λ

2

D∑
d=1

‖wd‖22, (1)

where ŷ is the vectorized Gaussian regression label. The

subscript d denotes the d-th one of D feature channels.

X̂d is defined as X̂d = diag(x̂d) and ĝ is an auxiliary

variable, which can be expressed as ĝd = F(B�wd). The

symbolˆand F represent the discrete Fourier transform. An

alternative formulation is ĝd =
√
NFB�wd, where F is an

orthonormal N ×N mapping matrix for Fourier transform.

The M×N binary matrix B implements cropping operation,

which is able to crop the mid M elements from the raw

signal with size N . The � denotes the conjugate transpose

of a matrix or vector. λ is the coefficient for the Tikhonov

regularization term. To solve the lack of closed-form solution

in Eq. 1, an augmented Lagrangian method (ALM) [16]

is applied. The specific Lagrangian function is able to be

reformulated without single channel representation:

L(w, ĝ, ζ̂) =
1

2
‖X̂ĝ − ŷ‖22 +

λ

2
‖w‖22

+ ζ̂
�(

ĝ −
√
N
(
FB� ⊗ IK

)
w
)

+
μ

2
‖ĝ −

√
N(FB� ⊗ IK)w‖22,

(2)

where μ is the trade-off penalty parameter and ζ̂ is the

Lagrangian parameters in the Fourier domain. IK is K ×K
identity matrix. Using Kronecker product ⊗, the reformu-

lated term is
∑

D X̂dĝd =
√
NX̂(FB� ⊗ IK)w.

The ALM problem in Eq. 2 can be solved iteratively by

alternating direction method of multipliers (ADMM). This

primal problem can be separated into two subproblems,

which can obtain analytic solutions, i.e., w∗ and ĝ∗, re-

spectively. Moreover, with sparse banded property and the

Sherman-Morrison formula [17], ADMM iterations can make

a real-time tracking performance.

2) Object detection: The location and scale changes of

the tracking object in frame t is estimated with a new image

patch zt and the auxiliary variable ĝt−1. With multiple

resolutions of the searching area, a maximum correlation

filter response can be determined in order to estimate the

object location and scale changes:

ŝt = argmax
s

{ẑt(s)� ĝt−1}, (3)

where ŝt is the expected location and scale changes of

tracking object. � denotes element-wise product.

3) Filter updating: The filter is updated with below

strategy:

x̃t = (1− α)x̃t−1 + αxt, (4)

where x̃t is appearance model that is obtained from xt and

x̃t−1. α is a constant learning rate.

Remark 2: It is noted that the filter in the BACF tracker is

updated frame-by-frame. In addition, it is not able to deal

with object occlusion effectively.

III. SCALABLE PART-BASED VISUAL TRACKER

WITH BACF

In UAV tracking applications, some typical challenging

factors, e.g., object occlusion and scale variation, are prone

to the deterioration of UAV tracking performance. To solve

these challenging issues, a novel scalable part-based tracking

method has been presented in this work.

A. Response Map Fusion with Adaptive Weights

As shown in Fig. 2, the tracking object is divided into

multiple parts. For each part, an independent classifier, i.e.,

BACF, is used to provide local response map f t
i . Finally,

these local response maps are fused into a joint response map

f t to locate the tracking object. To improve the robustness of

UAV tracking, adaptive weight, i.e., the importance of each

local response map, is designed based on two parameters

[15]: (1) peak-to-sidelobe ratio (PSR): it evaluates the sharp-

ness of response map. (2) smooth constraint of confidence

maps (SCCM): it evaluates the smoothness of response map.

The adaptive weight βt
i of each part is defined as:

βt
i = γ

1

SCCM t
i

+ PSRt
i, (5)

where γ is a trade-off parameter between the sharpness

and temporal smoothness of response map. SCCM t
i is the

smoothness of the i-th response map on the t-th image frame.
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PSRt
i is the sharpness of the i-th response map on the t-th

image frame. The joint response map f t, which combines

different local response maps with corresponding adaptive

weights, is defined as:

f t =
∑

βt
if

t
i . (6)

Remark 3: As the joint response map shown in the Fig. 2,

the effects of the occluded parts can be suppressed in order

to reduce their contributions for locating UAV object.

B. Tracking with Structure Comparison and Bayesian Infer-
ence Framework

A novel approach with coarse-to-fine strategy is presented

to estimate the location and scale changes of tracking object.

Specifically, the structures of tracking object on two consec-

utive frames are compared for estimating the initial location

and scale changes firstly, and then a Bayesian inference

framework is used to obtain the final object location and

scale changes.
1) Structure Comparison: After obtained the joint re-

sponse map, the coarse location and scale changes of tracking

object are estimated based on the local response maps. To

achieve a coarse estimation, the shift vectors of all parts are

applied to get the result of object translation. In details, the

translation is calculated with the shift vectors vt
i and their

trust scores ωt
i =

βt
i∑
βt
j
. The shift vector of the tracking

object vt is defined as:

vt =
∑
i

ωt
iv

t
i . (7)

In Eq. 7, a higher ωt
i represents a higher trust-level of this

part. The translation of the tracking object is determined with

shift vectors of reliable parts. The contributions of occluded

parts are reduced to maintain the tracking robustness.
To estimate the scale changes, we propose a method

based on the structure of all local response maps. In this

approach, the scale changes of the tracking object can refer

to the distribution of its reliable local response maps. Let

ei = ‖vt
i − vt‖ be the error. The standard deviation σe of

these errors, which represents how spread out the vectors

vt
i are, is calculated as the threshold to select reliable local

response maps. If ei > σe, the corresponding local response

map will not be reliable and be discarded.
Let σt

s and σt−1
s denote the standard deviation of peak

locations of reliable local response maps at frame t and t−1,

the coarse estimation of scale changes for tracking object is

the ratio of σt
s and σt−1

s , i.e.,
σt
s

σt−1
s

. In this work, the tracking

location and scale changes are updated initially with the shift

vector vt and the ratio
σt
s

σt−1
s

.

Remark 4: In the UAV tracking applications, object tracking

with multiple parts mainly has three characteristics: (1) the

object does not show a drastic location and scale changes in

two consecutive frames. (2) all tracking parts without occlu-

sion are constrained with a similar movement. (3) most of

the parts maintain a similar location distribution. Therefore,

the initial location and scale variation of the tracking object

are estimated based on the structure comparison.

2) Bayesian Inference Framework: In this framework, the

final object location and scale changes are estimated with the

initial results obtained from structure comparison. The object

state st is formulated with affine motion, it is defined as:

ŝt = argmax
stj

p(stj |z1:t), (8)

where z1:t is the measurement set with respect to the joint

confidence map, i.e., z1:t = {zi, i = 1, · · · , k}. stj is the

state of the j -th sample. To model the tracking process, the

Chapman-Kolmogorov equation is used, i.e.:

p(st|z1:t) ∝ p(zt|st)
∫

p(st|st−1)p(st−1|z1:t−1)dst−1.

(9)

In Eq. 9, system model p(st|st−1) is defined as:

p(st|st−1) ∼ N (st, s̃t−1,Ψ), (10)

where s̃t−1 is based on the coarse estimation of location and

scale from III-B.1. Ψ denotes a diagonal covariance matrix

whose elements are the variances of affine parameters.

Measurement model p(zt|st) in Eq. 9 is defined as:

p(zt|st) =
∑

f t(stj)�
M t

|M t| , (11)

where M t denotes the cosine window spatial mask whose

peak depends on the maximum of local response maps. | · |
is the number of the pixels in the corresponding bounding

box. f t(stj) is the response patch of the state stj from joint

response map.

Remark 5: Calculating the maximum posterior p(st|z1:t) in

Eq. 8 is equivalent to obtain the maximum of the likelihood

p(zt|st). The traditional likelihood is calculated based on

a set of eigenbasis vectors or templates. Inspired by [15],

response maps are applied in this work for calculating the

likelihood, which significantly simplifies the computation. In

Fig. 4, the summation of the response scores in a bounding

box with respect to each sampling candidate is calculated

directly.

Fig. 4. Calculation of likelihood on joint response map.
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C. Updating Classifier with Gaussian Process Regression

A novel adaptive threshold is proposed to update each lo-

cal appearance model, i.e., classifier. In this work, we model

the relationship between PSR and SCCM with Gaussian

process regression (GPR) to achieve adaptive updating. This

relationship is formulated as a set of functions, i.e., g : a ∈
R → g(u) ∈ R, where u = PSRt

i and g(u) = SCCM t
i .

The Gaussian process (GP) model describes the distribution

of this function set:

g(u) ∼ GP(
m(u),G(u, u′)

)
, (12)

where GP denotes Gaussian process. m(u) and G(u, u′)
are the mean function and covariance function of this set of

functions. This covariance function specifies the covariance

between pairs of PSRi:

k(q, q′) = σf
2exp

(− 1

2l2
(q − q′)2

)
, (13)

where σf and l are hyperparameters. q and q′ are the inputs,

i.e., PSRi values. After the normalization of raw inputs

PSRi and outputs SCCMi, the zero-mean distribution of

the functions is formulated with the following prediction for

each tracking part i at frame t:

[
y
g∗

]
∼ N

(
0,

[
K(a, a) + σn

2I k(x, a∗)
k(a∗,a) k(a∗, a∗)

])
, (14)

where y = g(a) + ε is the element of y, which are the

noisy observations of all functions. ε is Gaussian noise with

variance matrix σn
2I. a∗ is normalized value of PSRt

i and

the elements of vector a are normalized values of previous

PSRi. g∗ is normalized value of SCCM t
i . To improve

the update performance, we only select the a and y from

t − tr to t − 1 frames, where tr is the length of inputs

memory. This approach makes the GP model focus more on

the recent inputs and discard the distant ones. K(·, ·) and

k(·, ·) denote the convariance matrix and vector of inputs,

respectively. Deriving the conditional distribution g∗|a, a∗,y,

the key predictive equations, which describe the distribution

of the functions, are defined as:

ḡ∗ = k(a∗,a)
[
K(a, a) + σn

2I
]−1

y, (15)

V(g∗) = K(a, a)− k(a∗, a)
[
K(a, a) + σn

2I
]−1

k(a, a∗),
(16)

where ḡ∗ and V(g∗) are the mean and variance of the

conditional distribution, respectively. Taking advantage of

these parameters, a valid region of SCCM is constructed.

The upper limit of this region is ḡ∗+2
√

V(g∗) and its lower

limit is zero. On this basis, the update scheme of appearance

model i at the frame t is defined as:

x̃t
i =

{
(1− α)x̃t−1

i + αxt
i, if SCCM t

i is valid

x̃t−1
i , else

, (17)

where α is the learning rate that controls the update of the

appearance model. When the calculated SCCM t
i is located

(a) Tracking results.
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Fig. 5. Tracking comparison with GPR and constant threshold.

in the valid region, x̃t
i will be updated. Otherwise, it will not

be changed.

Remark 6: Compared to the usage of a constant threshold

applied in [15], the presented adaptive threshold for updating

the classifier is able to assist our tracker to achieve better

tracking performance, as the center location error (CLE),

which is the Euclidean distance between the ground-truth

and estimated object centers, shown in Fig. 5.

IV. PERFORMANCE EVALUATION

To validate the performance of our presented tracker for

UAV tracking applications, extensive UAV flight tests have

been conducted with Parrot bebop 2 1.

TABLE I

CHALLENGING FACTORS OF EACH IMAGE SEQUENCE.

Sequences OC SV IV DE IR OR CB MV AF
Biker

√ √ √ √ √
BlueMan

√ √ √ √
Car

√ √ √ √ √ √ √
Driver

√ √ √ √ √
Logo

√ √ √ √ √ √
OccMan1

√ √ √ √ √ √ √
OccMan2

√ √ √ √
boat1

√ √ √ √
boat2

√ √ √ √
boat5

√ √ √ √ √
building5

√ √ √ √ √ √
car10

√ √ √ √ √ √
car3

√ √ √ √ √
car9

√ √ √ √ √ √
group1-1

√ √ √ √ √ √ √ √
person1

√ √ √ √ √

A. Evaluation Dataset and Challenging Factor

In this paper, 7 challenging tracking sequences from our

flight tests are randomly selected for the validation. In

addition, 9 challenging tracking sequences from the well-

known UAV123 dataset [18] have been also chosen randomly

1http://www.parrot.com/
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as the baseline to evaluate the presented tracking algorithm.

The challenging factors of these 16 image sequences include

partial or full occlusion (OC), scale variation (SV), illumi-

nation variation (IV), deformation (DE), in-plane rotation

(IR), out-of-plane rotation (OR), cluttered background (CB),

mechanical vibration (MV), and aggressive flight (AF), as

shown in Tab. I.

B. Evaluation Criterion
For tracking performance evaluation criterions, one-pass

evaluation (OPE) [19] with the CLE and success rate (SR)

are employed. For the CLE, it has been introduced in the

Remark 6. For the SR, it depends on success score (SS),

which is defined as:

SS =
|ROIE ∩ROIGT |
|ROIE ∪ROIGT | , (18)

where | ∗ | is the number of pixels in a region. ∪ and ∩ are

the union and intersection operators. ROIGT and ROIE are

the ground-truth and estimated regions of the tracking object.

If the SS is larger than a threshold 	 (	=0.5 in this work)

in one frame, the tracking on this frame is considered as a

success. Therefore, the SR is defined as the ratio between

the successful frame number and total image frame number.

C. Tracker for Comparison
Since our tracker is based on the CF, the most popular

state-of-the-art CF-based trackers, i.e., KCF [10], BACF

[14], and MCCT [20], have been employed to compare with

our presented tracking algorithm, i.e, SPBACF. For all these

well-known trackers, we have used the open source or binary

programs provided by the authors with default parameters.

It is noted that convolutional features from a convolutional

neural network, e.g., VGG-Net [21], have been presented

for object tracking. However, the tracker with convolutional

features often requires high-cost computation. Since the UAV

always has limited computing capability, it is difficult for

UAV to achieve the real-time performance with convolutional

features. Therefore, the HOG feature [22] is used in the

MCCT tracker instead of convolutional features, i.e., MCCT-

H. In addition, all visual trackers are initialized with the same

parameters, e.g., initial object location and scale.

D. Setup of Our Tracker
In this work, we separate the holistic object into 5 different

parts. Specifically, the bounding box is divided into 4 parts

without overlaps, and the fifth one locates at the object center

with the same size as other 4 parts, as shown in the Fig. 2.

The parameters of background-aware CF tracker are the same

as the parameters in the BACF tracker [14]. In the adaptive

weighting step, we set the trade-off coefficient γ between the

PSR and SCCM as 10−4. To achieve a balance between the

performance and tracking speed, the number of particles is

set to 300. The covariance matrix [σx, σy, σsr, σsc, σθ, σφ] is

[4,4,0,0.01,0,0]. In GPR model, we set the hyperparameters

as following: the length of kernel l is equal to 0.5. The

deviations of signal σf and noise σn are 0.05 and 0.001,

respectively.

E. Evaluation Result and Discussion

Table II and III provide average CLE and SR for different

trackers on all challenging tracking sequences. From the Tab.

II, our tracker has achieved the best tracking performance

among all trackers in terms of the average CLE. Although

the average FPS of our tracker is ranking as No. 2, it is

fast enough to close the control loop for UAV navigation.

In addition, it is noted that the code of our tracker is not

optimized in this work. From the Tab. III, our tracker has

also obtained the best tracking performance in terms of the

average SR. Therefore, we can find that the presented tracker

performs favorably against KCF, BACF, MCCT-H trackers in

TABLE II

CENTER LOCATION ERROR (CLE) (IN PIXELS) AND FRAMES PER

SECOND (FPS). RED AND BLUE FONTS INDICATE THE BEST AND

SECOND-BEST PERFORMANCES IN ALL VISUAL TRACKERS.

Sequences SPBACF KCF BACF MCCT-H
Biker 3.46 37.19 4.12 5.99

BlueMan 3.10 60.52 1.93 2.98

Car 14.91 208.83 23.54 24.47

Driver 9.31 11.56 6.35 4.45

Logo 3.30 2.51 1.19 1.69

OccMan1 14.09 599.41 603.74 835.16

OccMan2 5.40 329.57 327.39 2.98

boat1 11.68 9.25 4.93 14.54

boat2 3.02 5.09 3.36 6.26

boat5 5.40 11.77 11.46 22.61

building5 3.98 24.72 3.28 2.94

car10 1.89 2.81 2.07 2.55

car3 1.88 2.56 1.62 2.03

car9 3.84 234.99 3.79 5.37

group1-1 8.39 26.90 68.55 4.70

person1 3.80 411.88 6.02 4.31

Average CLE 6.09 123.72 67.08 58.94
Average FPS 23.29 161.14 22.08 7.17

TABLE III

SUCCESS RATE (SR) (%) (�=0.5). RED AND BLUE FONTS INDICATE THE

BEST AND SECOND-BEST PERFORMANCES IN ALL VISUAL TRACKERS.

Sequences SPBACF KCF BACF MCCT-H
Biker 100.00 29.15 100.00 51.28

BlueMan 100.00 15.33 100.00 100.00

Car 97.50 29.50 88.50 77.50

Driver 100.00 46.70 100.00 100.00

Logo 100.00 69.86 100.00 99.29

OccMan1 99.17 35.95 40.12 39.88

OccMan2 97.80 15.80 16.20 98.20

boat1 100.00 23.92 100.00 100.00

boat2 100.00 60.67 100.00 100.00

boat5 88.76 29.59 78.11 35.50

building5 100.00 89.44 100.00 100.00

car10 99.57 98.08 99.57 99.57

car3 100.00 81.50 100.00 100.00

car9 98.25 6.54 98.24 97.93

group1-1 97.53 67.87 19.33 97.08

person1 90.26 16.10 100.00 100.00

Average SR 98.05 44.75 83.75 87.26
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Fig. 6. CLE error evolution plots of all trackers in different challenging tracking sequences.

terms of efficiency, robustness, and accuracy.

Figure 6 shows the CLE error evolution plots of all track-

ers in different challenging tracking sequences. Compared to

other 4 trackers, our tracker can maintain reasonable tracking

performance without obvious drifts. Figure 7 provides some

tracking examples with all trackers in different challenging

image sequences. Especially, our tracker is more robust to the

occlusion and scale variation compared to other 4 trackers.

V. CONCLUSIONS

In this paper, a novel robust real-time visual tracker has

been presented, and applied for the UAV to track freewill 2D

or 3D object. Specifically, the background-aware CF tracker

is used to achieve better tracking performance compared to

the classical CF tracker. An effective coarse-to-fine strategy

with structure comparison and Bayesian inference framework

is developed to improve the estimation of the tracking object

location and scale changes. In addition, an adaptive threshold

is established to update each local appearance model with a

Gaussian process regression approach. The extensive UAV

flight tests show that our presented visual tracker outper-

forms the most promising state-of-the-art visual trackers, and

overcome the object appearance change caused by different

challenging situations. We believe our approach will open the

doors to their wider use in real-world UAV tracking tasks.
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